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Long Story Short



Long Story Short

• The more robust your model is, the less the accuracy is.

◦ Or is it?

• Naively training model using adversarial examples for robustness might not
be a wise idea.
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Introduction



Review ML

The goal of ML is to minimize the criterion

min
θ∈Θ

E(x,y)∼D[L(x , y ; θ)]

or in a way, minimize adversarial loss

min
θ∈Θ

E(x,y)∼D

[
max
δ∈∆

L(x + δ, y ; θ)

]
Will this cost us anything?
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Visualization

−1

+1

LADV = 1[∃x′, x′ /∈ C−1]

LML = 1[x /∈ C+1]

Figure 1: Traditional ML loss VS adversarial loss on binary classification with 0-1 loss
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Training with Adversarial Loss

• Clearly we need 2 optimizations

(minimax):
◦ Adversarial Attack (inner max)
◦ Model training (outer min)
◦ We want to, at worst case scenario (maximize), get the robust prediction

(minimize)
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How can we solve the minimax optimization?

• Danskin’s theorem[1] implies that

∇θ max
δ∈∆

f (x + δ, y ; θ) = ∇θf (x + δ∗, y ; θ)

given that your constraint set is compact (ex. ℓp-ball on finite dimensional
space is compact) and your loss is a continuous function.

• Even if we can’t get the optimal δ∗, we can pretend what we have is good
enough and perform gradient descent.
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How does that differ compared to normal training?

• One can say this is data augmentation.

◦ We essentially add (adversarial) points to move the decision boundary.

Figure 2: Accuracy across the dataset with different numbers of training samples and
different levels of perturbation ε
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Problem

Figure 3: Decrease in accuracy when the strength of perturbation increases
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Theoretical Modeling



Classification Problem

• Consider the data generating model for a point (x , y)

y ∼ 2Ber(0.5)− 1

ξ ∼ 2Ber(p)− 1

x1 ∼ yξ

x2, . . . , xd+1
iid∼ N (ηy , 1)

η large

• Now, consider the simple classification model with a decision rule

f (x) = sign(w⊤x)

(linear model essentially)

• Formulate the adversarial problem with this.

9



Classification Problem

• Consider the data generating model for a point (x , y)

y ∼ 2Ber(0.5)− 1

ξ ∼ 2Ber(p)− 1

x1 ∼ yξ

x2, . . . , xd+1
iid∼ N (ηy , 1)

η large

• Now, consider the simple classification model with a decision rule

f (x) = sign(w⊤x)

(linear model essentially)

• Formulate the adversarial problem with this.

9



Classification Problem

• Consider the data generating model for a point (x , y)

y ∼ 2Ber(0.5)− 1

ξ ∼ 2Ber(p)− 1

x1 ∼ yξ

x2, . . . , xd+1
iid∼ N (ηy , 1)

η large

• Now, consider the simple classification model with a decision rule

f (x) = sign(w⊤x)

(linear model essentially)

• Formulate the adversarial problem with this.

9



Classification Problem

• Consider the data generating model for a point (x , y)

y ∼ 2Ber(0.5)− 1

ξ ∼ 2Ber(p)− 1

x1 ∼ yξ

x2, . . . , xd+1
iid∼ N (ηy , 1)

η large

• Now, consider the simple classification model with a decision rule

f (x) = sign(w⊤x)

(linear model essentially)

• Formulate the adversarial problem with this.

9



Classification Model

• Natural model would be

wn =
[
0 1

d
. . . 1

d

]
(given x1 weight of 0 and the rest equal weight)

P[f (x) = y ] = P

[
y
1

d

d+1∑
k=2

xk > 0

]

= P

[
y
1

d

d+1∑
k=2

N (ηy , 1) > 0

]

= P
[
y
1

d
N (ηdy , d) > 0

]
= P

[
yN

(
ηy ,

1

d

)
> 0

]
= P

[
N
(
η,

1

d

)
> 0

]
• P[N

(
η, 1

d

)
> 0] = 1− Φ

(
−η

√
d
)
, since Φ(3) ≈ 0.9986, therefore if

η ≥ 3√
d
then we have over 99% accuracy.
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Adversarial Accuracy

• Recall accuracy of natural model

P[f (x) = y ] = P
[
N
(
η,

1

d

)
> 0

]

• Suppose we perturb those point under ℓ∞ with ε = [0, 2η, . . . , 2η], then
the accuracy is

P[f (x − ε) = y ] = P
[
N
(
η,

1

d

)
− ϵ > 0

]
= P

[
N
(
−η,

1

d

)
> 0

]

• Then, if η ≥ 3√
d
, we can’t get accuracy under this adversarial more than

100%− 99% = 1%
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Visualization

[1, 0]

[0, 1]

Robust model

Standard model

+1−1

x2

x1

Figure 4: Decision Boundary of the standard and robust model on d = 1
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Empirical Analysis

Figure 5: Empirical analysis on binary classification task of MNIST (5 and 7).
Adversarial training indeed uses strongly correlated (i.e., robust feature) weight more
and ignores the weakly correlated feature.
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What does that tell us?

• Under a robust model, the only feature we can use is x1.

◦ Because, say in ℓ∞, one can perturb the ”weakly correlated” features
towards an anti-correlation direction.

◦ That is x2, . . . , xd+1 are subject to the adversarial attack while x1 is
invariant.

• Therefore, the robust accuracy is at most bounded by a function of
p = P[ξ = 1]
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Semantics under Embeddings



“Unexpected Results”

Figure 6: Loss gradient with respect to pixel value shows some “semantic” of the
image
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Perturbation under large ε

Figure 7: Large ε example on standard and robust model. One can see that the
example from robust model is semantically within the target class.
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Interpolation

Figure 8: GAN-like interpolation effect from large ε example
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Not so unexpected explanation

• As discussed under the robust model, the only feature we can use is x1.

◦ Then, in a way, robust models are forced to learn the invariant aspect of the
data.

◦ In a way, you are required to perturb the invariant direction in order to get
an adversarial example under the robust model.

◦ This direction of perturbation seems to be smooth, akin to GAN.
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Tradeoff



Long Story Short

• More sample complexity

◦ More data required to make the robust model.

• More time complexity
◦ You need to calculate the minimax problem (two optimizations) instead of

just the minimization problem
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Robustness Accuracy Tradeoff

Theorem (Robustness-accuracy trade-off)

Any classifier that attains at least 1− δ standard accuracy on D has robust
accuracy at most p

1−p
δ against an ℓ∞-bounded adversary with ε ≥ 2η

Proof.

• Let G+ be the distribution of x2, . . . , xd+1 when y = +1 and G− for
otherwise. Fix ε = 2η.

• Let

p++ = Px2,...,xd+1∼G+ [f (x) = 1|x1 = 1]

p−+ = Px2,...,xd+1∼G+ [f (x) = 1|x1 = −1]

p−− = Px2,...,xd+1∼G− [f (x) = 1|x1 = −1]

p+− = Px2,...,xd+1∼G− [f (x) = 1|x1 = 1]

• Then, from law of total probability

P[f (x) = y ] = P[y = +1]P[f (x) = 1|y = +1]

+ P[y = −1]P[f (x) = −1|y = −1]

20



Proof

Proof (con’t).

• Standard accuracy

P[f (x) = y ] = P[y = +1] (pp++ + (1− p)p−+)

+ P[y = −1] (p(1− p−−) + (1− p)(1− p+−))

=
1

2
[p(1 + p++ − p−−) + (1− p)(1 + p−+ − p+−)]

• Now, for adversarial accuracy

P[f (x − ε) = y ] = P[y = +1] (pp+− + (1− p)p−−)

+ P[y = −1] (p(1− p−+) + (1− p)(1− p++))

=
1

2
[p(1 + p+− − p−+) + (1− p)(1 + p−− − p++)]

• Let a = 1 + p−− − p++, b = 1 + p+− − p−+ then,

P[f (x − ε) = y ] =
1

2
(pb + (1− p)a) ≤ 2δ

(since P[f (x) = y ] = 1− P[f (x − ε) = y ] ≥ 1− δ)

21



Proof

Proof (con’t).

• Since a ≥ 0,

1

2
(pa+ (1− p)b) ≤ 1

2

(
pb + (1− p)

[
p

1 + p

]2
a

)
=

p

2(1− p)
((1− p)b + pa)

≤ p

1− p
δ

• Optimistically, if you have a good standard model, then the robust
accuracy will be small.

lim inf
δ→0

p

1− p
δ = 0

(lim sup is 1; hence limit does not exist).

• Moreover, it is tight in the sense that if δ = 1− p (only first feature), then
the robust accuracy is indeed p.
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SVM

Theorem
For η ≥ 4/

√
d and p ≤ 0.975 (the first feature is not perfect), a soft-margin

SVM classifier of unit weight norm minimizing the distributional loss achieves a
standard accuracy of > 99% and adversarial accuracy of < 1% against an
ℓ∞-bounded adversary of ε ≥ 2η. Minimizing the distributional adversarial loss
instead leads to a robust classifier that has standard and adversarial accuracy of
p against any ε < 1

Implication: Adversarial training is necessary to achieve non-trivial adversarial
accuracy

23
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Proof

Theorem
Adversarial training is necessary to achieve non-trivial adversarial accuracy

Proof.

• Recall the soft-margin SVM training

min
w

E
[
max

{
0, 1− yw⊤x

}]
︸ ︷︷ ︸

margin

+

regularization︷ ︸︸ ︷
1

2
λ∥w∥22

• Assume we use λ such that ∥w∥22 = 1

Lemma
Optimal solution w∗ has wi = wj ,∀i , j ∈ {2, . . . , d + 1}

• This lemma is true due to exchangability and convexity of the loss with
respect to w (more detail on paper).
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Proof

Proof (con’t).

• Since the weight is equal, we can define “meta-feature”

z =
1√
d

d+1∑
k=2

xk

• Then, we can decompose the sum as w⊤x = w1x1 + νz

• z ∼ N (ηy
√
d , 1)

η=4/
√
d

=⇒ νz ∼ N (4yν, ν2)

• Claim: ν∗ ≥ 1√
2
(weight on meta-feature should be at least equal to w1)

• If this claim is not true, then

E
[
max

{
0, 1− yw⊤x

}]
> (1− p)︸ ︷︷ ︸

x1 is wrong

E
[
max

{
0, 1 + w1 −N (4ν, ν2)

}]
p=0.975
= 0.0004

but

E
[
max

{
0, 1− yw⊤x

}]
< E [max {0, 1−N (4, 1)}]︸ ︷︷ ︸

w1=0 =⇒ ν=1

= 0.0004
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Proof

Proof (con’t).

• Claim With probability at least 99%, νzy > 1√
2
≥ w1

P[zy > 1] = 1− Φ(−3) ≥ 0.9986

multiply both side in probability with ν > 0 should not change the equality.

• This implies from νz alone, we can get accuracy more than 99%
independent of x1.

• Now the adversarial objective

min
w

E
[
max

{
0, 1− yw⊤x + ε∥w∥1

}]
︸ ︷︷ ︸

margin

+

regularization︷ ︸︸ ︷
1

2
λ∥w∥22

• If wi > 0 for i > 2, then it implies that we are contributing the weight
with negative mean (N (η, 1)− 2η ∼ N (−η, 1))!

◦ In another word, to maintain non-trivial robust accuracy, w1 must
dominates ν and that cost us with standard accuracy.
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Visualization

ν ↓, w1 ↑

+1−1

z

x1
+1−1

z

x1

Figure 9: Under adversarial training, the contribution over invariant direction increase
whereas the contribution to weakly correlated direction decrease
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