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Why do we care?

• Linear model is fast and easy to compute on CPU.

• Deep learning is not that easy to compute on CPU.

• If we can make the linear model to have really close performance

model to the deep learning in a generative task, it should be good.
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Autoencoder



Autoencoder

Autoencoder

Let say that we have a dataset which is Rn ⊇ D = {x1, . . . , xm}. Define
the parameterized function that captures the low-dimensional

representation ϕe
θ1

: Rn → Rp where p ̸= n and θ1 as parameters. The

autoencoder with parameter Θ =
[
θ1 θ2

]⊤
is the combination (or

composition) of the encoding parameterized function ϕe
θ1

and the

decoding parameterized function ϕd
θ2

: Rp → Rn specifically,

AE(x) = ϕd
θ2

◦ ϕe
θ1

(x)

In practice, those said parameterized functions are generally the neural

network model as the method of generating embedding and recovering

the data is complex.
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Linear Model as Parameterized

Functions



Problem Statement

Given the previous definition, if one were to use k-rank matrix

approximation for the data (i.e., k-PCA) for encoder

Z = ϕ̂e
θ1
(X) =

k∑
j=1

djujvj ≈ X̃

and use multiple multivariate linear regression,

ϕ̂d
θ2
(X) = Zθ2

This should still follow our definition of the autoencoder. Why does no

one use this?
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Empirical Initial Result

• Initial data: MNIST data, x ∈ R28×28 → R784

• Use PCA to approximate k-dimensional representation vector.

• Multivariate multiple linear regression is then used to recover the

data.

Figure 1: Naive approach
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Latent Space Interpolation

Figure 2: Latent space interpolation of the PCA and least square MMLR 6



Mathematical Interpretation of Initial Result

Postulate 1

Autoencoder where the encoder is PCA and the decoder is MMLR

results in the reconstruction which lies in the span of the PC score.

Proof Let X ∈ Rn×p be a data matrix. k-rank approximation of X

through PCA is

X̃ =
k∑

j=1

djujvj = UkDkV
⊤
k

Least square estimate for B of the linear regression model X = X̃B is

B =
(
X̃⊤X̃

)−1

X̃⊤X. Substitute in the UkDkV⊤
k to get

B =
(
(UkDkV

⊤
k )

⊤UkDkV
⊤
k

)−1
(UkDkV

⊤
k )

⊤X

=
(
VkDkU

⊤
k UkDkV

⊤
k

)−1
VkDkU

⊤
k X

= VkD
−1
k U⊤

k X

The reconstruction then be X̃B = UkDkV⊤
k VkD

−1
k U⊤

k X = UkU⊤
k X
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Linear Generative Model and

Inference Results



Linear Generative Model

Yobs|XM, ℓ ∼
∫

N
(
XMB

⊤
ℓ ,Σ

)
q(Bℓ)dBℓ

• In this study, we define the transformed data XM by model M to be

as followed:

• Principal Component Analysis (PCA)

• Linear Discriminant Analysis (LDA)

• Probabilistic Principal Component Analysis (PPCA)

• In this regression model, parameter B is treated as random.

• The realization of those parameters are from the average of the

sample drawn from the posterior distribution q(B) by variational

inference method.
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Variational Inference (VI)

• The idea is to find the easier-to-calculate distribution q(θ) to

approximate the true posterior distribution p(θ|x).
• This can be done by minimizing the KL divergence

KL(q(θ)||p(θ|x)) =
∫

q(θ) ln

(
q(θ)

p(θ|x)

)
dθ

• p(θ|x) is intractable (well, we want to approximate it in the first

place). However, using Bayes’ rule on the KL divergence definition,

KL(q(θ)||p(θ|x)) =
∫

q(θ) ln

(
q(θ)p(x)

p(x |θ)p(θ)

)
dθ

KL(q(θ)||p(θ|x)) = ln(p(x)) +

∫
q(θ) ln(q(θ)) dθ

−
∫

q(θ) ln(p(x |θ)) dθ −
∫

q(θ) ln(p(θ)) dθ
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Variational Inference (VI)

KL(q(θ)||p(θ|x)) = ln(p(x)) +

∫
q(θ) ln(q(θ)) dθ

−
∫

q(θ) ln(p(x |θ)) dθ −
∫

q(θ) ln(p(θ)) dθ

ln(p(x)) =

∫
q(θ) ln(p(x |θ)) dθ +

∫
q(θ) ln(p(θ)) dθ

−
∫

q(θ) ln(q(θ)) dθ + KL(q(θ)||p(θ|x))︸ ︷︷ ︸
≥0

• We call the lower bound of this log evidence Evidence Lower BOund

(ELBO) which is what we want to maximize in order to minimize KL

divergence.

• This can be done using an optimization algorithm like the

Newton-Raphson or gradient-based method.
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Latent Space Interpolation

Figure 3: Latent space interpolation of the digit 6 from different method

• They can generate new images within the latent space which is

(potentially) unseen.

• Comparable result with deep learning-based approach.
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Latent Space Interpolation (Con’t)

Figure 4: Latent space interpolation of the label 6 from different method

• Here, the data are more complex. However, all the linear models still

be able to produce the recognizable image.
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Numerical Results

p-Kantorovich-Rubinstein metric (or Wasserstein distance) is used for the

purpose of assessing the generative model

dF ,p(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
Rn×Rn

∥x − y∥p dγ(x , y)

) 1
p

Here, we essentially find the minimum expectation of Lp-distance over a

set of all coupling probability measures µ and ν.

For our purposes, p = 1 should suffice. Intuitively, from the optimal

transport point of view, this is like saying how much of the cost it takes

to transform the shape of the distribution from the measure µ to ν.
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Numerical Result

Table 1: Numerical evaluation of the combination of linear models on the

1-Wasserstein distance (realism) and number of principal components on

covariance for 95% total variation explained (variability) on handwritten digit

MNIST dataset based on empirical distribution from 2000 samples of the

prediction distribution on MMLR

Model
1-Wasserstein

(realism)

Number of PCs

on covariance for 95%

total variation explained

(variability)

PCA + Least squared MMLR 35.1612 9

PCA + VI MMLR 24.4795 10

LDA + VI MMLR 35.1802 5

PPCA + VI MMLR 35.2660 10

CVAE 35.1242 13
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Conclusion

• We can generate a lossy reconstruction of the initial data.

• However, we have shown that the viability of the generated images

is restricted in the submanifold from the span of the PC score.

• We also have shown, from numerical results, that adding stochastic

to this “linear model” does move us out of that space.

• Here, while we have shown numerically that when k → n, we would

have lossless data. However, the trend is not uniform.

• Yet, this alone is enough to be competable with a deep learning

model on the smaller-dimensional data while having fewer

parameters to estimate.
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Unexpected Result

Figure 5: Inference result for k = 16 and 64
16



Discussion

• More studies and experiments are needed to actually show whether a

linear model is enough or not. But one thing that can say (with

some caution) is that stochastic element does prevent the collapsing

of composition of linear mapping into one linear mapping.

• What if we try to project to the higher space first? Using Cover’s

theorem, arguably there should be a linear manifold that captures

the distinctiveness of embedding. −→ Kernel method (kind of)

• Also, our derivation of ELBO is from the KL divergence, since our

objective is to minimize the expected Lp-distance on the two

measures, why don’t we use that as our objective for the

optimization? −→ Wasserstein GAN (kind of)
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